
Distributed Objects

Naveen Hota

ECS Developers Workshop
30 May 1995

727-PP-001-001 NH-1

Roadmap

• Distributed Objects
• Special Topics & Insights
• Extensions in Security & Directory
• An Example: Code walk through

727-PP-001-001 NH-2

Functional vs. Object Oriented
Application Development

Case: Single Address
space

• Functional:
– Function oriented
– No state information
– Thoroughly familiar
– Location is a pointer

• Object Oriented:
– Has state and behavior
– Extendable
– Provides Encapsulation
– Inheritance, Abstraction
– Getting comfortable
– Location is a pointer

Process

Sort

SortFn

Process

Sort
Math

Matrix

727-PP-001-001 NH-3

Object vs. Distributed Object

Single address space Query

Proxy object Real object

Client address space Server address space

Query

Multiple address space

client
Query

server

727-PP-001-001 NH-4

Distributed Object Application

Process B

Process CStat-sMath-s

Query-sStat-c
Process A

Math-c

Stat-c

Query-c

• Multiple address space

• True stateful servers

• State and behavior is captured in objects

• Object location is
– host, port, transport

– or interface, object identifiers

– or a unique name in the namespace
NH-5727-PP-001-001

Distributed Objects Application

•	 Clear separation between the interface and
imlementation

•	 Isolates the application developers from low
level communicatio programming

• Incremental evolution & flexibility
• Location and language independent
•	 Application logic is same irrespective of the

physical location of the real object
• Share objects
•	 Security may be an issue, but can be dealt

with.
• Has some overhead.

727-PP-001-001 NH-6

Evolution Path

• End Goal: CORBA (not mature today)
• Closest is OODCE

– Same paradigm
– Functional subset of CORBA in DO area
– Has some good additional features: Security, Versioning
– Migration is possible with minimal breakage (but not

transparent)

– Level of effort for migration is (relatively) low

727-PP-001-001 NH-7

Keytab File

•	 Start rgy_edit on the desired host
by typing “rgy_edit” and do the
following:

– rgy_edit =>ktadd -p authSrPrName -f
authSrKFile.pwd

– Enter password: ****

– Re-enter password to verify: ****

– rgy_edit => ktlist -f authSrKFile.pwd

/.../baltic.hitc.com/authSrPrName

– rgy_edit => quit

NOTE: Server application must
have read access to the
Keytab file created

keytab
file

Application
Server

rgy_edit

727-PP-001-001 NH-8

Client/Server Authentication

•	 For clients and the servers to prove their identities to

each other

• Server specifies the level of security OFFERED

– Through the SetAuthInfo() API

– Done on a per server basis (NOT on an object/interface basis)

• Client specifies the level of security DESIRED

– Through the SetAuthInfo() API

– Done on per object basis

727-PP-001-001 NH-9

Client/Server Authentication
(continued)

• SetAuthInfo API

– Authentication protocol (ex: No authentication, DCE

secret-key authentication)

– Authorization protocol (ex: Name based authorization,

PAC/DCE based authorization)

– protection level (ex: Connect level, Packet_integrity,

Packet_privacy, etc.)

•	 For fine grain control at the server a

Reference Monitor is used

– Force a client to request certain security levels before

servicing its call.

727-PP-001-001 NH-10

Authorization

• Checking the privileges to access a resource
– Resource can be operations, files, etc.

• Two types of Authorization
–	 Name based

» check done based on the name of the principal.

– PAC based

»	 check done based on the group to which the principal belongs
(extended one)

» (PAC - Privilege Attribute Certificate, obtained by a principle
during Login)

•	 Selected by specifying appropriate authorization
protocol in the SetAuthInfo()

NOTE: Name based Authorization can be used in
Legacy applications (database)

727-PP-001-001 NH-11

ACL Manager

• Major security component of the server

• Provides authorization functionality
–	 Supports ACL, which has entry/s as follows:

» entryType:key:permissions (ex: user:joe:rw)

–	 To check if the client is authorized to access an object/operation/...
» Reads ACL associate with object and decides privileges

• Defines Access Control Permissions
– Application developer definable

– CSS by default creates 32 permissions

»	 7 standard permissions - read, write, execute, test, delete, acl
control, insert

» 25 User desired permissions - p1, p2,......,p25

• Creates and associates ACLs to objects
– Stored in memory

727-PP-001-001 NH-12

ACL Manager (contd)

• Creates and manages ACL Databases

•	 Supports standard interface (rdaclif) for

external system

– To edit/ manipulate ACLs

•	 CSS provides a class which encapsulates all

the above functionalities

NOTE: CSS will provide ACL Database

persistence

727-PP-001-001 NH-13

ECSSec Class Functionality

• ACL schema definition
– defines a set of permissions (valid within an ACL)

• ACL manipulation
– through internal interfaces
– through standard external interface (ex: rdacl)

• ACL database creation
– maintains a binary tree of ACLs in memory

• Authorization checking
–	 Maps object’s ACL with client’s PAC using standard DCE

ACL checking algorithm

• Provides persistent storage of ACLs
– maintains updated ACLs in persistent store
– reads ACLs back into memory when server is restarted

NOTE: Objects not in the same virtual address
space should not share ACLs

727-PP-001-001 NH-14

Threads

• What are threads ?
– Light weight processes spawned and controlled by a

parent
– Each thread shares text and data with the parent
– Each thread can have private and unshared data

• Why are threads needed?
– Performance considerations and conceptual clarity

» for concurrent processing
» for servers to service multiple client requests
» for clients to make several requests concurrently

• How are threads implemented?
– In the kernel
– In the infrastructure (e.g., DCE)

727-PP-001-001 NH-15

Threads (contd.)

•	 Operations on threads available to the parent
process:

– Create a thread
– Change the priority
– Change the scheduling policy
– Change run time characteristics
– Wait/kill/join with a thread

NOTE:
– Care must be taken to ensure that application code is

reentrant (thread safe and usage of thread safe
libraries)!!

– Limitations: Max number of threads per process is
platform dependent

– CSS will establish a limit of approximately 500 threads
per process

727-PP-001-001 NH-16

Time

• What is Time service?
– Manages clocks on host systems to be synchronized in a

network environment
– Provides interface to external time providers to get

reliable time

• What is provided?
– Application programmers can retrieve time information in

various formats
– Application programmers can specify a delta to be

applied to simulate clocks

727-PP-001-001 NH-17

When to Distribute Objects

•	 When an object needs to be accessed from
different processors

– Why?
» Performance
» Proximity of data
» Shared system

– Why not?
» Network overhead

• Make only the needed objects into DO
•	 Identified ~50 DOs (may go up to ~100) for

SCDO in Release A of ECS

727-PP-001-001 NH-18

Servers & Object Instances

Trig

Stat

Trig

Stat

SimEqn

Mat_2Mat_1

Util_srv1

Util_srv2

Equations_srv1

Servers

Object Instances

Host

727-PP-001-001 NH-19

Multiple Servers & Instances

• Need for Multiple servers
– Performance

» Load distribution & Effective utilization of resources
» Locality (reduce network traffic)

• Need for multiple Instances in a server
– Multiple clients accessing stateful objects

• Interface design
– Conceptual
– Implementation (may need to break it for performance)

727-PP-001-001 NH-20

Iterators in DOs

• What is an iterator
– An OO mechanism to facilitate sequential retrieval of

every element of a container class not in the same virtual
address space(DOs) as the caller

• How should iterators be used
– Provide member functions to retrieve object reference to

the next element in a container class
– Client surrogate calls the “next object” method of the

container class and rebinds the client object (of the
element) with the returned object reference

V2_s

E2_sE1_s E2_s E2_s

727-PP-001-001 NH-21

Instantiation of server objects

• General solution
– Run the server objects continuously

• Drawback
– Wasteful of host resources

• Alternate solutions
– Factory
– Activation
– Customizing client stubs with the above methods

727-PP-001-001 NH-22

Factory

• How is it done ?
– Maintain another object in the same virtual address space

with the sole purpose of creating a server class on
demand.

– When instantiation is required, bind to the factory object
and request a server object be instantiated.

– The factory returns a reference to the caller for binding to
the instantiated server object

• Drawback
– Interaction between the created object and other objects

with in the server do not take advantage of co-residing in
the same virtual address space.

– Factories may not be transient objects

Solution: Embed the factory functionality in a
class that needs interaction with the created
class

727-PP-001-001 NH-23

Factories

V1_s

V2_s

DS_s

V2_c

E2_s

E1_s

E3_s

E4_s

Listen
GSO

Server Application

Server
Client

727-PP-001-001 NH-24

Activation

• How is it done ?
– Create the server object and a corresponding activation

object and register them with the GSO (as an activation
object)

– Upon receiving an incoming request, GSO instantiates an
object, if not already running through the activation
object and routes the call to the actual object.

• Lookup of a factory is not necessary
• Suitable for stateless servers
• Drawback

– Can not be used for stateful servers because the GSO
does not permit the creation of more than one instance of
any given object.

727-PP-001-001 NH-25

Activation

MathStat

E/GSO Activation
Objects

727-PP-001-001 NH-26

Customizing the Client stubs

• How is it done ?
– Specialize the base class generated by the IDL compiler

for customization and add a new constructor
– Instantiate the client object without a binding
– Instantiate the server object (through a factory) and

obtain a reference to it
– Reset the binding to the server object using the reference

obtained in the previous step

•	 Migration will be transparent (No factories or
lookups in the application code)

NOTE: Every client object must be specialized

from the default class generated by the IDL

727-PP-001-001 NH-27

Customizing the Server stubs

• Why is it needed ?
– IDL doesn’t support state information
– Need to add state information to the server object
– May want to add other local functionality (private

methods)

• How is it done ?
– Specialize the base class generated by IDL compiler for

customization.

NOTE: Every server object must be specialized

from the default class generated by the IDL

727-PP-001-001 NH-28

Object Passing

•	 Objects can NOT be passed as arguments to
Distributed Objects

– Only structures may be passed in OODCE

• Alternate ways
– Flatten the state into a byte stream(XDR) and send it and

recover it at the other end
– Convert the state into a structure and send it and recover

it at the other end
» Limitation: Converted structure is limited to have

only 1 conformant array at the end

• Future
– Included in CORBA
– Proposed for DCE1.2 (RFC 48.3 by DEC)

727-PP-001-001 NH-29

Extending Directory/Naming

• Why is it needed?
– It is needed by applications to store application specific

state information for other applications to access
– DCE provided interfaces are either too rigid (NSI) or too

cumbersome (XOM/XDS).

•	 CSS is providing the capability for extending
the directory service through a generic and
easy interface

•	 Uses GDS/CDS to store and retrieve user
application specific information

• Advantages:
– Insulates the application developer from changes in the

underlying technology
– Upward compatible with proposed XFN

727-PP-001-001 NH-30

CSS Directory/Naming

Client Application

ECS Naming Interface Namespace 1 Namespace 2

GDS BIND Nn

Tree Leaf

Entry Name AttrValPair AttrValPair

....... Val2 Attr Val1

727-PP-001-001 NH-31

Directory/Naming Classes

• ECSContext
– Defines the set of bindings with distinct atomic names
– Each context is associated with a namespace

• Composite Name
– A nested set of contexts - a complete path
– Intermediary nodes

» list/read/add sub contexts
– Leaf nodes

» add/read/delete elements (information associated
with each composite name)

• Element
– Maintains attribute value pairs
– Provides Add/Delete/Modify/Get attribute value pairs

727-PP-001-001 NH-32

Directory/Naming classes
(contd.)

• ECSAttribute
– Provides functionality to Get/Set attribute name and

type

• ECSValueList
– A container class of values
– Provides Set/Get/Delete values

• ECSValue
– Provides Set/Get a value

NOTE: It currently uses CDS/GDS to save and
retrieve application specific information

Other namespaces can be integrated with the
provided layer

Uses Security present in the native namespace

727-PP-001-001 NH-33

Security in non RPC Environment

• The need
– In DCE, security is embedded in RPCs and easy to use by

developers
– All ECS applications may not use only DCE RPCs to

communicate

• What is provided by CSS?
– Same level of security as DCE RPCs
– Requires more involvement on the part of the application

developer

727-PP-001-001 NH-34

Security in non RPC Environment

ACLEdit
G/ESO

u1:r
...

DB1 DB2

ACLMgr

ECSSOs

u1:r
...

ECSSecFac

SecSrv Client

ECSSOc

ECSSFc

Server

1 per host
(as needed)

Authentication
Integrity
Privacy

Authorization

SecSnd

SecSndSecRcv

SecRcv

727-PP-001-001 NH-35

SecSnd Object Functionality

• AcquireNewCredentials
– Get credentials from DCE or renew them

• SetMsgBody
– Set the application message

• SetMessageFlags
– Indicate protection levels

• SetRecipient
– Indicate the recipient identity

• PrepareMessage
– Transforms the message suitable for transfer

727-PP-001-001 NH-36

SecRcv Object Functionality

• AcquireNewCredentials
– Get credentials from DCE or renew them

• SetIncomingMsg
– Set the received message to be decoded

• GetMsgFlags
– Get protection levels

• GetSenderIdentity
– Get the sender’s identity

• GetMsgBody
– Decode the message & verify protections

727-PP-001-001 NH-37

Code Walk-through

Frank Deluca

30 May 1995

111-CD-000-018 NH-1

Client/Server Interaction

EPM

G/ESO

DSs

View1s View2s

E2s

D/N
u1:r
...

DB1 DB2

ACLMgr

ECSSec

u1:r
...

DS-c

E-c

V-c

2b

2c

1c

1a

2a

2i

2h

2d

2g2f

2e3a

3c3b

2k

2j 1b

6a 3f

3e

3d

E1s E3s E4s

4a

3h

3g

5a

ACLEdit

727-PP-001-001 NH-39

